Welcome to Hydrology

Nicole Clegg – NHDES/NH Project WET Alicia Carlson – NHDES

GLOBE contact - Jen Bourgeault

Hydrology is...

- The science of water in all its forms on, in, and over the land areas of the earth, including its:
 - distribution
 - circulation
 - behavior
 - chemical and physical properties
 - reaction of the environment with water.

All the Water in the World

Reservoir % Total Volume Atmosphere/Soil moisture /Biosphere 0.006 Rivers and lakes 0.01 Groundwater 0.68 Glacial and other land ice 2.051 Oceans and sea ice 97.25 TOTAL: 100.000

Focus on Fresh Surface Water

- · Lentic systems
 - Nonflowing water (retained for days, weeks, or years).
 - Lakes, ponds, wetlands.
 - Energy fixed primarily in lake.
 - Most organisms suspended in water column.
- Lotic systems
 - Flowing water (in transit).
 - Rivers and streams.
 - Energy fixed primarily in land surrounding the system.
 - Most organisms near, on or in substrate.

Lentic Systems 101 Key = Vertical Layers

- Because the water is not flowing, many lentic systems vertically stratify into layers.
- Stratification occurs because of differences in water temperature and density.
- In NH, during seasons of "extreme" temperature (summer and winter), lakes stratify and during seasons of moderate temperature (spring and fall) lakes mix or "turnover."

Lake Zones In addition to layers, lakes also have three distinct zones. Littoral zone: near shore, penetration of sunlight, macrophytes Limnetic zone: open water, penetration of sunlight, periphyton Profundal zone: open water, no sunlight penetration

Lake Classification

- Limnologists classify lakes according to their trophic states (extent of nutrient input.)
 - Rate of nutrient input (natural and human).
 - Morphology (shape of lake basin).
 - Biological community.

Lotic Systems 101 Key = Longitudinal Segments

- Overall, water in lentic systems is more chemically uniform because water is constantly mixing.
- Lentic systems are often studied in longitudinal segments.
- Physical stream characteristics dictate biological attributes.

River Continuum Concept

✓ Biological
communities in a river
change in a
continuous,
predictable fashion
from headwaters to
mouth, as a function
of the physical setting.

Headwaters

- Narrow channel
- Shaded low light, consistent temp
- Few to no plants
- Energy from outside (CPOM)
- Life cycles keyed to leaf fall
- Benthic organisms = shredders, collectors

Midreach

- >10' wide channel
- Canopy open warmer, variable temp
- Meanders, riffles and pools
- Increased plants and nutrients in water (FPOM)
- Benthic organisms = fewer shredders, more collectors, scrapers and grazers

Mouth

- · Wide, deep channel
- · Open to sunlight
- Big arcing meanders
- High sediment inputs (high turbidity and nutrient levels, low light penetration)
- Lower primary productivity (FPOM)
- Benthic organisms = collectors

Common characteristics of lentic and lotic

- Quality of water in both systems can be affected by natural and human factors.
- The health of both systems depends on the inputs from the land area draining to it.

Measuring Water Quality

- The bulk of today will be spent measuring water quality in two ways:
 - Through chemical means
 - Through biological means
 - Using GLOBE protocols

Chemical vs. Biological Assessment		
	Chemical	Biological
Pros	•Highly sensitive	•Directly measures
	Measures specific	impact to the biota
	parameters	•Takes cumulative and
	•Detect immediate	temporal impacts into
	changes	consideration
Cons	•Cannot determine long	•Reduces ability to
	term impacts	detect immediate
	•Only useful if impact	impacts
	occurs at time of sampling	•Unable to confirm
		impact source

Aquatic systems reflect their surroundings

 Both lentic and lotic systems include not only the direct body of water but also the land area that drains to it – WATERSHED!

